skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oldfather, Meagan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses. 
    more » « less
  2. Free, publicly-accessible full text available January 31, 2026
  3. null (Ed.)
    The populations, species, and communities in high elevation mountainous regions at or above tree line are being impacted by the changing climate. Mountain systems have been recognized as both resilient and extremely threatened by climate change, requiring a more nuanced understanding of potential trajectories of the biotic communities. For high elevation systems in particular, we need to consider how the interactions among climate drivers and topography currently structure the diversity, species composition, and life-history strategies of these communities. Further, predicting biotic responses to changing climate requires knowledge of intra- and inter-specific climate associations within the context of topographically heterogenous landscapes. Changes in temperature, snow, and rain characteristics at regional scales are amplified or attenuated by slope, aspect, and wind patterns occurring at local scales that are often under a hectare or even a meter in extent. Community assemblages are structured by the soil moisture and growing season duration at these local sites, and directional climate change has the potential to alter these two drivers together, independently, or in opposition to one another due to local, intervening variables. Changes threaten species whose water and growing season duration requirements are locally extirpated or species who may be outcompeted by nearby faster-growing, warmer/drier adapted species. However, barring non-analogue climate conditions, species may also be able to more easily track required resource regimes in topographically heterogenous landscapes. New species arrivals composed of competitors, predators and pathogens can further mediate the direct impacts of the changing climate. Plants are moving uphill, demonstrating primary succession with the emergence of new habitats from snow and rock, but these shifts are constrained over the short term by soil limitations and microbes and ultimately by the lack of colonizable terrestrial surfaces. Meanwhile, both subalpine herbaceous and woody species pose threats to more cold-adapted species. Overall, the multiple interacting direct and indirect effects of the changing climate on high elevation systems may lead to multiple potential trajectories for these systems. 
    more » « less
  4. null (Ed.)
    We quantified fire severity in the Tubbs Fire (Sonoma Co., CA, October 2017) across different vegetation types, and post-fire mortality and regeneration of tree species in permanent plots at the Pepperwood Preserve. The fire burned 14,895 ha, with > 25% in both medium and high severity. Chaparral and Pinus attenuata stands mostly burned at high severity, while other vegetation types experienced a fairly even distribution of fire severity. The fire killed 50% of saplings (dbh < 1 cm) and 27% of trees (dbh ≥ 1 cm), with higher mortality in high severity patches. Quercus agrifolia, Q. kelloggii, Arbutus menziesii and Umbellularia californica exhibited very high levels of topkill combined with basal resprouting. Pseudotsuga menziesii, which lacks resprouting ability, exhibited high mortality, especially in saplings at high severity. The results provide a baseline to examine potential vegetation change due to high-severity fire, especially in high-severity stands of P. menziesii. 
    more » « less
  5. Abstract Fine‐scale microclimate variation due to complex topography can shape both current vegetation distributional patterns and how vegetation responds to changing climate. Topographic heterogeneity in mountains is hypothesized to mediate responses to regional climate change at the scale of metres. For alpine vegetation especially, the interplay between changing temperatures and topographically mediated variation in snow accumulation will determine the overall impact of climate change on vegetation dynamics.We combined 30 years of co‐located measurements of temperature, snow and alpine plant community composition in Colorado, USA, to investigate vegetation community trajectories across a snow depth gradient.Our analysis of long‐term trends in plant community composition revealed notable directional change in the alpine vegetation with warming temperatures. Furthermore, community trajectories are divergent across the snow depth gradient, with exposed parts of the landscape that experience little snow accumulation shifting towards stress‐tolerant, cold‐ and drought‐adapted communities, while snowier areas shifted towards more warm‐adapted communities.Synthesis: Our findings demonstrate that fine‐scale topography can mediate both the magnitude and direction of vegetation responses to climate change. We documented notable shifts in plant community composition over a 30‐year period even though alpine vegetation is known for slow dynamics that often lag behind environmental change. These results suggest that the processes driving alpine plant population and community dynamics at this site are strong and highly heterogeneous across the complex topography that is characteristic of high‐elevation mountain systems. 
    more » « less
  6. Abstract The expectations of polar or upslope distributional shifts of species ranges in response to warming climate conditions have been recently questioned. Diverse responses of different life stages to changing temperature and moisture regimes may alter these predicted range dynamics. Furthermore, the climate driver(s) influencing demographic rates, and the contribution of each demographic rate to population growth rate (λ), may shift across a species range. We investigated these demographic effects by experimentally manipulating climate and measuring responses of λ in nine populations spanning the elevation range of an alpine plant (Ivesia lycopodioides). Populations exhibited stable growth rates (λ ~ 1) under naturally wet conditions and declining rates (λ < 1) under naturally dry conditions. However, opposing vital rate responses to experimental heating and watering lead to negligible or negative effects on population stability. These findings indicate that life stage–specific responses to changing climate can disrupt the current relationships between population stability and climate across species ranges. 
    more » « less
  7. Abstract The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate. 
    more » « less